

Electrical Circuits (2)

Electrical Eng. Dept. 1st year communication 2016/2017

Sheet (3 solutions)... Series Resonance

1. A series RLC network has R=2k Ω , L=40 mH, and C=1 μ F. Calculate the impedance at resonance and at one-fourth, one-half, twice, and four times the resonant frequency.

times the resonant frequency.
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(40\times 10^{-3})(1\times 10^{-6})}} = 5 \, \text{krad/s}$$

$$Z(\omega_0) = R = \frac{2 \, k\Omega}{2 \, (\omega_0/4)} = R + j \left(\frac{\omega_0}{4} \, L - \frac{4}{\omega_0 C}\right)$$

$$Z(\omega_0/4) = 2000 + j \left(\frac{5\times 10^3}{4} \cdot 40\times 10^{-3} - \frac{4}{(5\times 10^3)(1\times 10^{-6})}\right)$$

$$Z(\omega_0/4) = 2000 + j (50 - 4000/5)$$

$$Z(\omega_0/4) = \frac{2 - j0.75 \, k\Omega}{2 \, L - \frac{2}{\omega_0 C}}$$

$$Z(\omega_0/2) = R + j \left(\frac{(5\times 10^3)}{2} (40\times 10^{-3}) - \frac{2}{(5\times 10^3)(1\times 10^{-6})}\right)$$

$$Z(\omega_0/2) = 2000 + j \left(\frac{(5\times 10^3)}{2} (40\times 10^{-3}) - \frac{2}{(5\times 10^3)(1\times 10^{-6})}\right)$$

$$Z(\omega_0/2) = 2 - j0.3 \, k\Omega$$

$$Z(2\omega_0) = R + j \left(2\omega_0 \, L - \frac{1}{2\omega_0 C}\right)$$

$$Z(2\omega_0) = 2000 + j \left((2)(5\times 10^3)(40\times 10^{-3}) - \frac{1}{(2)(5\times 10^3)(1\times 10^{-6})}\right)$$

$$Z(2\omega_0) = 2 + j0.3 \, k\Omega$$

$$Z(4\omega_0) = R + j \left(4\omega_0 \, L - \frac{1}{4\omega_0 C}\right)$$

$$Z(4\omega_0) = 2000 + j \left((4)(5\times 10^3)(40\times 10^{-3}) - \frac{1}{(4)(5\times 10^3)(1\times 10^{-6})}\right)$$

$$Z(4\omega_0) = 2000 + j \left((4)(5\times 10^3)(40\times 10^{-3}) - \frac{1}{(4)(5\times 10^3)(1\times 10^{-6})}\right)$$

$$Z(4\omega_0) = 2000 + j \left((4)(5\times 10^3)(40\times 10^{-3}) - \frac{1}{(4)(5\times 10^3)(1\times 10^{-6})}\right)$$

$$Z(4\omega_0) = 2 + j0.75 \, k\Omega$$

Electrical Circuits (2)

Electrical Eng. Dept. 1st year communication 2016/2017

2. A coil with resistance 3Ω and inductance 100 mH is connected in series with a capacitor of 50 pF, a resistor of 6Ω and a signal generator that gives 110 V rms at all frequencies. Calculate wo, Q, and B at resonance of the resultant series RLC circuit.

$$R = 6 + 3 = 9 \Omega$$

$$\omega_o = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{100 \times 10^{-3} \times 50 \times 10^{-12}}} = \frac{447.21 \text{ krad/s}}{4969}$$

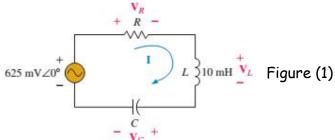
$$Q = \frac{\omega_o L}{Q} = \frac{447.21 \times 10^3}{4969} = \frac{90 \text{ rad/s}}{4969}$$

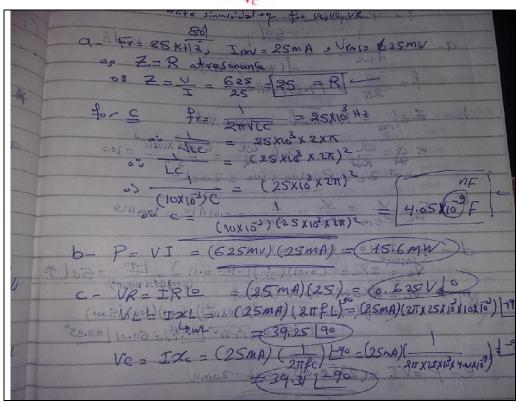
3. Design a series RLC circuit with B=20 rad/s and ω_0 =1000 rad/s. Find the circuit's Q.

Let
$$R = 10 \Omega$$
.

$$L = \frac{R}{B} = \frac{10}{20} = 0.5 \text{ H}$$

$$C = \frac{1}{\omega_0^2 L} = \frac{1}{(1000)^2 (0.5)} = 2 \mu F$$


$$Q = \frac{\omega_0}{B} = \frac{1000}{20} = 50$$
Therefore, if $R = 10 \Omega$ then
$$L = \underline{0.5 \text{ H}}, \qquad C = \underline{2 \mu F}, \qquad Q = \underline{50}$$

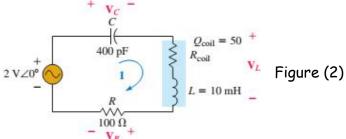


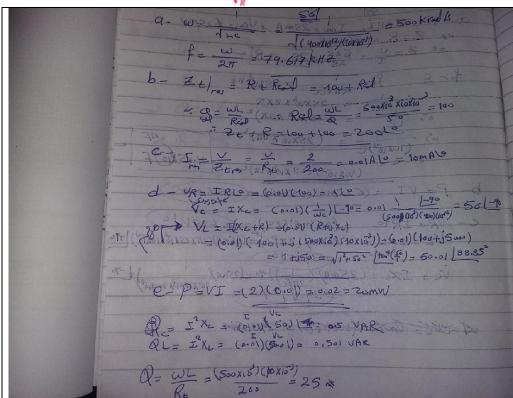
Electrical Circuits (2)

Electrical Eng. Dept. 1st year communication 2016/2017

- 4. Consider the circuit of Figure 1
 - a. Determine the values of R and C such that the circuit has a resonant frequency of 25 kHz and an rms current of 25 mA at resonance.
 - b. Calculate the power dissipated by the circuit at resonance.
 - c. Determine the phasor voltages, V_{C} , V_{L} , and V_{R} at resonance.

- 5. Refer to the circuit of Figure 2.
 - a. Determine the resonant frequency expressed as \boldsymbol{w} (rad/s) and f(Hz).
 - b. Calculate the total impedance, Z_T , at resonance.
 - c. Solve for current I at resonance.

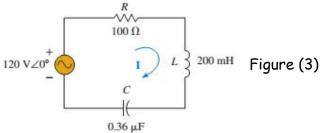


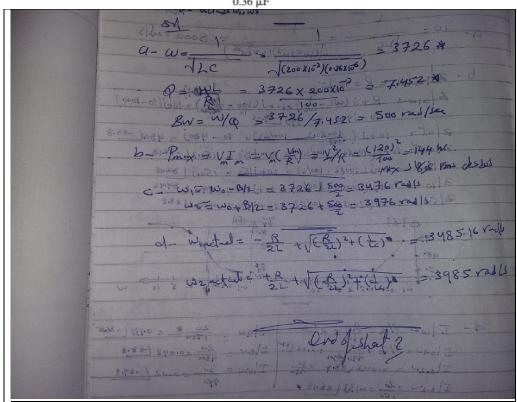

Electrical Circuits (2)

Electrical Eng. Dept. 1st year communication 2016/2017

- d. Solve for V_R , V_L , and V_C at resonance.
- e. Calculate the power dissipated by the circuit and evaluate the reactive powers, Q_{C} and Q_{L} .
- f. Find the quality factor, Qs, of the circuit.

- 6. Refer to the circuit of Figure 3.
 - a. Find w_5 , Q, and BW (in radians per second).
 - b. Calculate the maximum power dissipated by the circuit.
 - c. From the results obtained in (a) solve for the approximate half-power frequencies, $\omega 1$ and $\omega 2$.




Electrical Circuits (2)

Electrical Eng. Dept. 1st year communication 2016/2017

d. Calculate the actual half-power frequencies, $\omega 1$ and $\omega 2$, using the component values and the appropriate equations.

